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1. Introduction

My research focuses on several geometric and dynamical questions related to translation
surfaces. Translation surfaces lie at the crossroad between (Riemannian and algebraic) geom-
etry, low-dimensional dynamics, ergodic theory, geometric group theory, Teichmüller theory,
and number theory. In the first part of my thesis, I was specifically interested in the algebraic
intersection of closed curves on these surfaces, and more precisely the question of knowing how
many times two closed curves of a given length can intersect. The second part of my thesis
is devoted to the study of Veech groups of translation surfaces, which somehow encode the
symmetries of each given surface and which are Fuchsian groups. A fundamental (but difficult)
question is to know which Fuchsian groups can be realized as Veech groups of translation surfaces.

Informally, a translation surface can be seen as a collection of polygons in the plane with
parallel sides identified by translations. Such a surface inherits a flat metric except on a finite
number of conical singularities whose angles are integer multiples of 2π, and which correspond to
certain vertices of the polygons. The set of all translation surfaces1 (of genus g ≥ 1) has a natural
geometric structure and can be interpreted as the Hodge bundle ΩMg of the holomorphic 1-
forms above the moduli space Mg of complex structures on a (compact orientable) genus g
surface. It is naturally stratified by the number and the order of the singularities; namely
ΩMg = ⊔Hg(k1, . . . , kn), where the ki are integers representing the order of the singularities

satisfying
n∑

i=1
ki = 2g − 2.
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Figure 1. On the left, the double heptagon translation surface. It has genus
three and a single singularity of angle 10π. On the right, a fundamental domain
in the Poincaré half-plane H2 for the orbit of the double heptagon under the
action of SL2(R). Each point corresponds to an element of the orbit and the
double heptagon lies at the two identified corners. The Veech group of the double
heptagon is conjugated to the Hecke group of level seven.

This structure proves to be particularly rich, and in particular it carries a natural action
of GL+

2 (R) which comes from the action on the polygons. As shown by Veech, the stabilizer
of a given X ∈ ΩMg is a Fuchsian group, which is now referred to as the Veech group of X.
Every element of the Veech group induces an2 affine diffeomorphism of the surface. The work of
several authors, including Veech, has shown that this group encodes many geometric properties
of the surface. The translation surfaces whose Veech group is a lattice (called Veech surfaces)

1modulo the action of the mapping class group.
2In some cases, it may also induce several different affine diffeomorphisms.
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form a class of particularly interesting surfaces, both from the geometrical and dynamical point
of view. The orbit of these surfaces under the action of SL2(R) ⊂ GL+

2 (R) projects in Mg

to a complex geodesic, which is called a Teichmüller curve. The classification of Teichmüller
curves, and more generally of orbit closures under the SL2(R)-action, is a central problem
in Teichmüller dynamics where recent progress lead to the developpement of many new and
revolutionnary techniques.

Organization. In the sequel, I will describe the following.

• In Section 2, I adress the question of the classification of Teichmüller curves by explaining
a result joint with Sam Freedman [BF22] which shows that there is no geometrically
primitive Veech surface in the locus Prym(2, 2) ⊂ H(2, 2) of surfaces having a Prym
involution.

• In Section 3, I focus on translation surfaces with infinitely generated Veech groups, and
more specifically on the study of connection points that allow to build such surfaces.
In [Bou22], I prove that the central points of the double heptagon are not connection
points, which gives a negative answer to a question of P. Hubert and T. Schmidt. This
question is related to the distribution of saddle connections as well as the notion of
Hecke continued fractions, and exhibits a deep link with a problem from number theory.

• In Section 4, I elaborate upon the notion of interaction strength which quantifies the
maximum number of intersection of two curves of given length on a Riemannian surface
with conical singularities. I will specifically address the case of flat surfaces and the be-
havior of this flat interaction strength by deformation of a given surface, which I studied
in [BLM22], [Bou23a] and [Bou23b] as well as in an ongoing work with I. Pasquinelli.

2. Veech surfaces with a Prym involution

One method for classifying Veech surfaces may be to first search for those that cannot be
constructed from another Veech surface by a covering construction. Such surfaces are called
geometrically primitive. Despite several recent major advances such as the results of [EFW18]
and [EMMW20], this question of the classification of primitive Veech surfaces remains largely
open. In genus two, primitive Veech surfaces have been classified in a series of articles by
C. McMullen [McM05b, McM05a, McM06a]. In genus three, the classification is not complete
but C. McMullen [McM06b] exhibited an infinite family of primitive Veech surfaces. The work
of several authors has since shown that, apart from this family, there is only a finite number of
primitive Veech surfaces (up to the action of GL+

2 (R)), see [McM21, Theorem 5.5]. This infinite
family consists of surfaces having a Prym involution and a single singularity. A translation sur-
face with a Prym involution can be constructed as a double cover of a half-translation surface
(branched at the singularities), see [McM06b] or [LN13]. To search for other primitive Veech
surfaces, a natural idea is to look for translation surfaces with a Prym involution, but having
several singularities. In this context, E. Lanneau and M. Möller [LM19] searched for primitive
Veech surfaces in the loci Prym(2, 1, 1) and Prym(2, 2), which is made up of translation sur-
faces having a Prym involution and respective singularities of order (2, 1, 1) and (2, 2). They
prove that there is no primitive Veech surface in Prym(2, 1, 1) and identify 92 candidates in
Prym(2, 2). In a joint work with Sam Freedman [BF22] published at the Comptes-Rendus de
l’académie des sciences, we show:

Theorem 2.1. There are no geometrically primitive Veech surfaces in Prym(2, 2).

Our method relies on a computer program which uses the package Flatsurf of Sage and where
we compute the orbit closure of the 92 candidates. It would be interesting to know whether the
methods of [LM19] and [BF22] could be extended to Prym(1, 1, 1, 1).

3. Connection points and Hecke continued fractions

In another direction, we can look for translation surfaces whose Veech group is infinitely
generated. A way of building such surfaces has been exhibited by P. Hubert and T. Schmidt



RESEARCH STATEMENT: BOULANGER JULIEN 3

[HS04], who define and use the notion of connection point. A connection point is a (non-singular)
point of the surface such that any geodesic starting at a singularity and passing through this
point again meets a singularity. A vertex-to-vertex geodesic trajectory is a saddle connection.
A (non-singular) point of the surface is said to be periodic if its orbit under the action of the
affine diffeomorphisms of the surface is finite. A periodic point is automatically a connection
point. In this context, we can ask:

Question. Is it possible to characterize the connnection points of a given translation surface?

By a result of C. McMullen (see also Boshernitzan [Bos88] in the setting of interval exchange
transformations), when the field generated by the traces of the matrices of the Veech group
(called the trace field), is either Q or quadratic over Q, the connection points are exactly (after
a natural normalization) the points with coordinates in the trace field. However, as soon as the
degree over Q of the trace field is three or more, no example of a non-periodic connection point
is known. In [Bou22], published at the Bulletin de la SMF, we are specifically interested in the
double heptagon, built from two copies of a regular heptagon whose sides are glued together,
and more generally the double n-gon for n ≥ 7 odd. These surfaces are, with the regular n-gons
for even n, the original surfaces studied by Veech in his founding article [Vee89]. Their trace
fields have degree at least three over Q for odd n ≥ 7. They are therefore natural examples on
which one can start looking for non periodic connection points. In particular, the centers of the
n-gons, which are not periodic points, are candidates to be connections points. For n = 7 and
n = 9, we show that in fact this is not the case:

Theorem 3.1. The central points of the double heptagon (as well as the double nonagon) are
not connection points.

To prove Theorem 3.1, we use the notion of Hecke continued fractions, introduced by D. Rosen
in [Ros54]. It follows from a result of T. Schmidt and M. Sheingorn [SS95] (as well as Veech
dichotomy [Vee89]) that these continued fractions characterize the periodic3 directions on the
double n-gon: a direction on the double n-gon is periodic if and only if the Hecke continued
fraction expansion of its slope (obtained from the ”next-integer” continued fraction algorithm)
is finite. In [Bou22], we exhibit geodesic trajectories from starting at the singularity and passing
through one of the central points whose slope has an infinite periodic Hecke continued fraction
expansion. In particular, such geodesic trajectories are not closed. It is interesting to note that
such examples give vertex-to-vertex billard trajectories on the (π2 ,

π
7 ,

3π
14 )-triangle such that all

other trajectories in this direction are uniquely ergodic. To go further, it would be interesting
to classify the periodic directions in the trace field for the double heptagon, see for example
[McM21, Question 3.8]:

Question. Does every x ∈ Q[2 cos π
7 ] have either a finite or an eventually periodic Hecke

continued fraction expansion?

Figure 2. A vertex to vertex trajectory on the (π2 ,
π
7 ,

3π
14 )-triangle in an uniquely

ergodic direction.

3A direction is periodic if any geodesic in this direction is either closed or a vertex-to-vertex trajectory.
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4. Interaction strength on the moduli space of translation surfaces

Finally, a significant part of my thesis deals with the algebraic intersection of curves on a
Riemannian surface, defined by assigning a sign to each intersection point, and investigates
more specifically the following:

Question. How many times can two closed curves of a given length intersect?

This question, which makes sense for any orientable surface X on which we can measure the
lengths of the closed curves, can be quantified by defining:

KVol(X) := Vol(X) · sup
α,β

Int(α, β)

l(α)l(β)

where the supremum is taken over pairs of closed curves on X. Normalizing by the volume
makes the quantity scalar invariant. According to the terminology of [Tor23], we can refer
to KVol(X) as the interaction strength of the surface X, but in our setting we consider the
algebraic intersection instead of the geometric intersection. The study of KVol goes back to
D. Massart’s work in [Mas97], where this KVol appears (indirectly) as a comparison constant
between the stable norm and the Hodge norm in homology. The study of KVol has since been
deepened by D. Massart and B. Muetzel [MM14], but many questions remain open, starting
with the question of the explicit computation of KVol on simple examples of surfaces. In this
context, S. Cheboui, A. Kessi and D. Massart [CKM21a, CKM21b] initiated the study of KVol
on translation surfaces by explicitely calculating KVol on the Teichmüller disk of some square-
tiled surfaces. In [BLM22] and [Bou23a], we study KVol on the Teichmüller disk of the original
Veech surfaces: the double regular n-gon for odd n and the regular n-gon for odd n.

Namely, we first use a subdivision method (we decompose closed geodesics in small pieces for
which we can estimate both lengths and intersections) to obtain

Theorem 4.1. Let n ≥ 2, then:

• The supremum in the definition of KVol on the double (2n+1)-gon is achieved uniquely
by pairs of distinct sides of the polygons.

• The supremum in the definition of KVol on the regular 4n-gon is achieved uniquely by
pairs of distinct sides of the polygons.

Note that the regular (4n + 2)-gon is a translation surface with two singularities, and the
sides are not closed curves anymore. In this case, our techniques only allow to obtain an upper
bound on KVol, see [Bou23a].

Behavior of KVol under deformation. Next, we study the behavior of KVol on these
surfaces under deformation. For this, we use the knowledge of KVol on the double regular
(2n+ 1)-gon (resp. the 4n-gon) as well as their associated staircase models, and we prove and
use a sharp result of hyperbolic geometry that allows to compare the angles between two pairs
of saddle connections on a translation surface. This method applies particularly well to the
double regular (2n+ 1)-gon, for which we have:

Theorem 4.2. [BLM22, Theorem 1.1] Let n ≥ 2. Given d, d′ ∈ R ∪ {∞} ≃ ∂H2, let γd,d′ the
geodesic of the Poincaré half plane H2 whose endpoints are d and d′. Let X = M · S2n+1 be a
surface in the Teichmüller disk of the double regular (2n+1)-gon X2n+1 which is obtained from

the staircase model S2n+1 associated to X2n+1 by applying a matrix M =

(
a b
c d

)
∈ SL2(R).

Then, we have:

KV ol(X) = K2n+1 ·
1

cosh(distH2(di+b
ci+a ,Γ2n+1 · γ∞,0))

where K2n+1 = n
2 cot(

π
n) ·

1
sinπ/n > 0, Γ2n+1 is the Veech group of X2n+1 and distH2 is the

hyperbolic distance in the Poincaré half plane.
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Figure 3. In the fundamental domain for the Teichmüller disk of the double
pentagon, we have, KVol(X) = K5 sin θ = K5

1
cosh(dH2 (X,γ0,∞)) .

A geometric interpretation of this result is given in Figure 3. In a forthcoming paper with
I. Pasquinelli (a preliminary version already appears in my thesis manuscript), we generalise
this result to Bouw-Möller surfaces with a single singularity.

Concerning the regular 4n-gon, interestingly, due to the shape of the cylinder decomposition,
KVol in the Teichmüller disk does not behave as well as in the double (2n+1)-gon case: instead
of computing KVol on any point of the fundamental domain by looking at the distance with
respect to a single geodesic, there is now an (explicit) infinte family:

Theorem 4.3. [Bou23a, Theorem 1.1] Let n ≥ 2. Given d, d′ ∈ R ∪ {∞} ≃ ∂H2, let γd,d′

denote the geodesic in the hyperbolic plane H2 having d and d′ as endpoints, and define:

Gmax =
⋃

k∈N∗∪{∞}

γ∞,± 1
kΦ

(with the convention 1
∞ = 0).

Let X = M ·S4n be a surface in the Teichmüller disk of the regular 4n-gon X4n, obtained from

the staircase model of the regular 4n-gon S4n by applying a matrix M =

(
a b
c d

)
∈ SL2(R).

Then, we have:

(4.1) KVol(X) = K4n · 1

cosh(distH2(di+b
ci+a ,Γ4n · Gmax))

Where K4n > 0 is an explicit constrant which only depends on n and distH2 denotes the hyper-
bolic distance.

Lower bound on KVol on the minimal stratum. Finally, in [Bou23b] we study KVol on
the minimal stratum of the moduli space of translation surfaces, and namely we are interested
in the following:
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Figure 4. The geodesics γ∞, 1
kΦ

for k = 1, 2, 3 and their images by the Veech

group intersecting the fundamental domain. On the right, the same geodesics
on the surface H2/Γ4n.

Question. Find the optimal constant C(g) > 0 such that for any translation surface of genus
g with a single singularity, we have KVol(X) > C(g).

We already know from [MM14] that C(g) ≥ 1, and from [CKM21b] that C(2) ≤ 2. In
[Bou23b], I generalize [CKM21b] result to any genus, namely I show that C(g) ≤ g. In fact, we
conjecture from computer experiments that C(g) = g.

5. Other directions

Apart from the work presented here, I am also eager to work on other projects. I especially
participated in several conferences and workshops of the ANR Adyct on spectral analysis on
surfaces, as well as a reading group on Teichmüller theory and pseudo-Anosov diffeomorphisms.
I also enjoy working with Sagemath to test my questions on simple examples and develop intu-
ition. For example, I recently contributed to the implementation of the algebraic intersection of
saddle connections on the package Flatsurf developped by V. Delecroix, J. Rüth and P. Hooper.
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