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Introduction: billiards in regular polygons

We consider an ideal billard trajectory on a regular polygon starting at the

very center of the polygon.

Question

If the trajectory ends at a vertex, does the trajectory obtained from the

reversed direction also ends at a vertex ?
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Question

If the trajectory ends at a vertex, does the trajectory obtained from the

reversed direction also ends at a vertex ?

In a equilateral triangle, the answer is YES.

In a regular pentagon, the answer is YES, as a consequence of the

work of A. Leutbecher, 1967, combined with results of W. Veech,

1989.

On a heptagonal and a nonagonal billiard (n = 7, 9), the answer is

NO. (B.-2022)

For n ≥ 11 odd, the anwser is again NO. (B.-2025)
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1 Hecke groups and cusp representatives

2 From billiards on regular polygons to Hecke groups

Unfolding a billard trajectory in a rational polygon
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Hecke groups

De�nition

The Hecke group Hn of level n is the subgroup of PSL2(R) generated by

S = ±
(
0 −1

1 0

)
and Tn = ±

(
1 λn

0 1

)
where λn = 2 cos π

n .

→ H3 = PSL2(Z)
→ S is a symmetry of order two: S2 = ±I2.
→ We have

Un := TnS = ±
(

cos π
n sin π

n
− sin π

n cos π
n

)
and in particular Un

n = ±I2.
→ More, the group Hn is the free product generated by Un and S .

Hn = C2 ∗ Cn
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The action on the hyperbolic plane

Proposition (Hecke)

Hn < PSL2(R) is a discrete subgroup, that is a Fuchsian group.

In particular, Hn acts on the hyperbolic plane by isometries (mobius

transformations): (
a b
c d

)
· z =

az + b

cz + d

T · z = z + λn

S · z =
−1

z
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Rosen cusp challenge

Question (Rosen cusp Challenge, 1954)

Determine Hn · ∞.

In other words, we want to understand the set of cusp representatives,

or parabolic limit points, i.e. �xed points of parabolic elements of Hn.
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Rosen cusp challenge

Question (Rosen cusp Challenge, 1954)

Determine Hn · ∞.

Today, we will restrict ourselves to the case where n is odd.
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A �rst obstruction

Since Hn ⊂ PSL2(Z[λn]), we have, for M =

(
a b
c d

)
∈ Hn,

M · ∞ =
a · ∞+ b

c · ∞+ d
=

a

c
∈ Q[λn] ∪ {∞}

In other words:

Hn · ∞ ⊆ Q[λn] ∪ {∞}
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Hecke continued fractions

If M = T a0ST a1 · · · ST akS , then

M · ∞ = a0λ− 1

a1λ− 1

a2λ−...

As a consequence, the elements of Hn · ∞ are the real numbers having a

�nite Hecke continued fraction expansion.

A continued fraction expansion

can be computed using the

(Hecke) next-integer algorithm.

More, this algorithm selects the

�nite expansion (if it exists).

For n = 3, we have λ3 = 1, Q[λ3] = Q, and

H3 · ∞ = PSL2(Z) · ∞ = Q ∪ {∞}.
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Hecke continued fractions

If M = T a0ST a1 · · · ST akS , then

M · ∞ = a0λ− 1

a1λ− 1

a2λ−...

As a consequence, the elements of Hn · ∞ are the real numbers having a

�nite Hecke continued fraction expansion.

A continued fraction expansion

can be computed using the

(Hecke) next-integer algorithm.

More, this algorithm selects the

�nite expansion (if it exists).

Theorem (Leutbecher, 1967)

H5 · ∞ = Q[λ5] ∪ {∞} = Q[
√
5] ∪ {∞}.
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Hecke continued fractions

If M = T a0ST a1 · · · ST akS , then

M · ∞ = a0λ− 1

a1λ− 1

a2λ−...

As a consequence, the elements of Hn · ∞ are the real numbers having a

�nite Hecke continued fraction expansion.

A continued fraction expansion

can be computed using the

(Hecke) next-integer algorithm.

More, this algorithm selects the

�nite expansion (if it exists).

Theorem (Borho-Rosenberger, 1973 and Seibold, 1985)

For n ≥ 7 odd,

Hn · ∞ ⊊ Q[λn] ∪ {∞}.
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Eventually periodic Hecke continued fraction expansion

Theorem (Schmidt-Sheingorn, 1995)

The real numbers having an eventually periodic Hecke continued fraction

expansion are the �xed directions of hyperbolic elements of Hn.

→ Such numbers always lie in a quadratic extension of Q[λn] (or in Q[λn] itself!)

→ For n = 3, 5, since every element of Q[λn] has a �nite Hecke c.f., there

is no hyperbolic �xed point in Q[λn].
→ For n = 7, 9, we have [Q[λn] : Q] = 3 and there are hyperbolic �xed

points in Q[λn]. More, we have

Conjecture

Let n = 7, 9. Then every element of Q[λn] is either a parabolic �xed

point (�nite c.f.) or a hyperbolic �xed point (eventually periodic c.f.).

→ For n ≥ 11, it seems that there are no hyperbolic �xed point in Q[λn] !
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Obstruction modulo two

Theorem (Borho-Rosenberger, 1973 - Seibold, 1985)

For n ≥ 7 odd,

Hn · ∞ ⊊ Q[λn] ∪ {∞}.

Proof (n = 7, 9) There are elements in Q[λn] whose Hecke c.f. is

eventually periodic. They do not belong to Hn · ∞.

Proof (n ̸= 9). Using the correspondence

x =
s

t
∈ Q[λn] ∪ {∞} ↔ [s : t] ∈ P1(Z[λn])

we can consider the reduced orbit modulo two:

Hn · [1 : 0] ⊆ P1(Z[λn]/2Z[λn])

Lemma (Borho, 1973 - Borho-Rosenberger, 1973)

For n ≥ 7 odd, apart from n = 9, the inclusion is strict.
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Recap

Hn · ∞ ⊂ Q[λn] ∪ {∞}
For odd n, this inclusion is an equality if and only if n = 3 or n = 5.

The elements of Hn · ∞ are the real numbers having a �nite

next-integer Hecke continued fraction expansion.

For n = 7, 9, there are elements of Q[λn] with an in�nite eventually

periodic continued fraction expansion: these elements do not belong

to Hn · ∞.

Inside Q[λn], and from n ≥ 7, with the exception of n = 9, there is

an obstruction modulo two for an element to be in Hn · ∞.

Conjecture

For n = 7, the obstruction modulo two is the only obstruction, that is

x = s
t ∈ Hn · ∞ if and only if [s : t] ∈ Hn · [1 : 0].

→ This conjecture is not true for n = 9, and it also seems not to be true

for n ≥ 11 although no proof is known.
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Unfolding a billiard trajectory in a rational polygon

We want to study a billard trajectory on the pentagon (resp. any rational

polygon):
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Unfolding a billiard trajectory in a rational polygon

When the trajectory reaches a side, instead of considering the usual

billiard trajectory, we consider a re�ected copy of the billiard table itself.

→ The obtained mirror trajectory is then just a straight line!
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billiard trajectory, we consider a re�ected copy of the billiard table itself.

→ The obtained mirror trajectory is then just a straight line!
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Unfolding a billiard trajectory in a rational polygon

At some point, we obtain a polygon which is a translated image of one of

the previous polygons. We move it back to this previous polygon and we

continue the trajectory there.
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Unfolding a billiard trajectory in a rational polygon

At some point, we obtain a polygon which is a translated image of one of

the previous polygons. We move it back to this previous polygon.
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Unfolding a billiard trajectory in a rational polygon

Since there are only �nitely many re�ected copies of the pentagon

(because its symmetry group is a �nite dihedral group), this process

transforms the trajectory in the original pentagonal billiard to a trajectory

on a �nite surface, given by polygons and identi�cations of sides and

where the identi�cations are given by translations. Although the

surface seems more complicated, the trajectory is now a straight line:
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Unfolding a billiard trajectory in a rational polygon

In fact, this necklace surface is a 5−cover of the double regular

pentagon pictured below.

We will see that, for the purpose of studying trajectories it is su�cient to

work on the double regular pentagon (resp. on the double regular n-gon
for odd n).
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Unfolding a billiard trajectory in a rational polygon

The study of the billiard �ow in a rational polygon (i.e. whose angles are

rational multiples of π) reduces to the study of the directionnal �ow on a

translation surface.

De�nition

A translation surface is a surface obtained from a collection of euclidean

polygon, by identifying pairs of parallel opposite sides of the same length

(by translation).
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Translation surfaces

De�nition

A translation surface is a surface obtained from a collection of euclidean

polygon, by identifying pairs of parallel sides of the same length (by

translation).

These surfaces can also be described as

topological surfaces with an atlas of

charts on the surface minus a �nite set

of points Σ such that all transition

functions are translations, along with a

distinguished direction.

Σ is the set of singularities.
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Geodesics on a translation surface

De�nition

A separatrix is a geodesic segment starting from a singularity.

A saddle connection is a geodesic segment from a singularity to a

singularity.

Figure: Examples of saddle connections on the double regular heptagon.
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Geodesics on a translation surface

De�nition

A separatrix is a geodesic segment starting from a singularity.

A saddle connection is a geodesic line from a singularity to a singularity.

Figure: Another example of saddle connection on the double heptagon.
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Geodesics on a translation surface

De�nition

A separatrix is a geodesic segment starting from a singularity.

A saddle connection is a geodesic line from a singularity to a singularity.

A connection point is a non-singular point on a translation surface such

that every separatrix passing through this point extends to a saddle

connection.

The midpoints of the sides are connection points, because they are �xed

points of an involution.
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Theorem (B.- 2022 and 2025)

Given n ≥ 7 odd, the centers of the n-gons are not connection points on

the double regular n-gon.

An example of separatrix which does not extend to a saddle connection

on the double heptagon, and the corresponding billiard trajectory on the

regular heptagon.

Question

How to certify that a given separatrix does not extend to a saddle

connection ?
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Theorem (B.- 2022 and 2025)

Given n ≥ 7 odd, the centers of the n-gons are not connection points on

the double regular n-gon.

An example of separatrix which does not extend to a saddle connection

on the double heptagon, and the corresponding billiard trajectory on the

regular heptagon.

Theorem (Veech, 1989)

The directions of saddle connections on the double regular n-gon are in

bijection with the elements of Hn · ∞.
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Symmetries of a translation surface

The double regular n-gon (for odd n) has a symmetry of order two and a

symmetry of order n.

De�nition

The group of a�ne di�eomorphisms of a translation surface X is the

group of di�eomorphisms φ : X → X which are expressed as a�ne

transformations in local charts.

The group of a�ne di�eomorphisms of the double regular n-gon is a free

product C2 ∗ Cn.
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Teichmüller space and moduli space

The two polygonal models above give the same resulting surface, whereas

we have below two polygonal models of surfaces with di�erent properties.
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Teichmüller space and moduli space

De�nition

The moduli space ΩMg of translation surfaces of genus g is the set:

ΩMg =

{
Collection of polygons with

identi�cations of parallel sides of
the same length and genus g

}
/cut and paste
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SL2(R)-action

Given a translation surface X described by a collection of polygons and

M ∈ GL+
2
(R), we can construct the translation surface M · X .

It is often convenient to consider the action of SL2(R) instead of GL+
2
(R)

as it preserves the area.
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Example: the golden L and the double pentagon

Lemma

The double pentagon and the golden L belong to the same GL+
2
(R) orbit.

→ In particular, there is a bijective correspondence between saddle

connections (resp. connection points) on these two surfaces !
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Veech group

De�nition

The Veech group of a translation surface X is the stabilizer of X (in the

moduli space) under the action of SL2(R). We denote it by SL(X ).

Proposition

The Veech group the �at square torus is SL2(Z).
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Veech group

De�nition

The Veech group of a translation surface X is the stabilizer of X (in the

moduli space) under the action of SL2(R). We denote it by SL(X ).

Theorem (W.Veech, 1989)

For any translation surface X , SL(X ) is a discrete subgroup of SL2(R).
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Example : the golden L

Proposition

The Veech group of the golden L is the Hecke group H5, generated by

S :=

(
0 1

−1 0

)
and T :=

(
1 φ
0 1

)
where φ = 2 cos π

5
= λ5 is the golden mean.
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The staircase model of the double regular n-gon

More generally, to a double regular n gon is associated a staircase model:

From the double regular n-gon to its staircase model, we �rst apply the

matrix

P =
1

sin (n−1)π
2n

(
sin π

n − cos π
n + 1

sin π
n cos π

n + 1

)
.

then we cut and paste the pieces to obtain a staircase surface.

Theorem (Veech, 1989)

Let n ≥ 3 odd. The Veech group of the staircase model of the double

regular n-gon is the Hecke group of level n.
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Periodic directions on Veech surfaces

Theorem (Veech, 1989)

Let X be a translation surface whose Veech group SL(X ) is a lattice.

Given a direction θ on X , we have the following alternative:

either the �ow in direction θ is completely periodic (all geodesics in

this direction are closed or saddle connections)

or it is uniquely ergodic (geodesics in this direction equidistribute

with respect to the lebesgue measure).

Further, the �rst case arise if and only if θ is an eigendirection of a

parabolic matrix of SL(X ).
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Let X be a translation surface whose Veech group SL(X ) is a lattice.

Given a direction θ on X , we have the following alternative:

either the �ow in direction θ is completely periodic (all geodesics in

this direction are closed or saddle connections)

or it is uniquely ergodic (geodesics in this direction equidistribute

with respect to the lebesgue measure).

Further, the �rst case arise if and only if θ is an eigendirection of a

parabolic matrix of SL(X ).

Corollary

Periodic directions on the staircase model of the double regular n-gon are

those whose slope belong to Hn · ∞.
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Connection points: a few motivations

Question

What are the Fuchsian groups that arise as Veech groups of translation

surfaces ?

Theorem (Hubert-Schmidt, 2004)

Let X be a translation surface whose Veech group is a lattice. Let P be a

connection point on X such that its orbit under the action of the a�ne

group is not �nite. Then any surface XP constructed as a �nite

(translation) cover of X rami�ed at P has a Veech group which is not

�nitely generated.

Theorem (Consequence of McMullen, 2006)

When the algebraic �eld KX generated by {tr(M),M ∈ SL(X )} is Q or

quadratic over Q, we have a complete characterisation of connection

points.
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Connection points: a few motivations

Question

What are the Fuchsian groups that arise as Veech groups of translation

surfaces ?

Theorem (Hubert-Schmidt, 2004)

Let X be a translation surface whose Veech group is a lattice. Let P be a

connection point on X such that its orbit under the action of the a�ne

group is not �nite. Then any surface XP constructed as a �nite

(translation) cover of X rami�ed at P has a Veech group which is not

�nitely generated.

The case [KX : Q] ≥ 3

When the algebraic �eld KX generated by {tr(M),M ∈ SL(X )} has

degree three or more over Q, we do not know any example of connection

point whose orbit under the action of the a�ne group is not �nite.
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Recap

We want to know whether or not the central points of the double

regular n-gon are connection points for n ≥ 3 odd.

We work in the associated staircase model instead, where directions

of saddle connections are those with slope in Hn · ∞.

First obstruction: Hn · ∞ ⊂ Q[λn] ∪ {∞}.

→ Connection points on the staircase model of the double regular n-gon
have coordinates in Q[λn].

The points in the staircase model

corresponding to central points have

coordinates of the form 1

n (x , x) and
x ∈ Z[λn].
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Theorem (Leutbecher, 1967)

H5 · ∞ = Q[λ5] ∪ {∞} = Q[
√
5] ∪ {∞}.

As a consequence, the central points

of the double pentagon are

connection points.

(As well as any point whose

coordinates in the golden L lie in

Q[
√
5].)

Theorem (Borho-Rosenberger, 1973 - Seibold, 1985)

For n ≥ 7 odd,

Hn · ∞ ⊊ Q[λn] ∪ {∞}.
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n = 7 and n = 9

For n = 7, 9, we can use Hecke continued fractions:

For n = 7, the central point is not a

connection point:

Here is an example of a separatrix

passing through one of the central

point whose slope has an eventually

periodic Hecke continued fraction

expansion. (B.-2022).

For n = 9, the same argument works, you can �nd (easily) an explicit

separatrix whose slope has an eventually periodic Hecke continued

fraction expansion (B.-2022).
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For n = 7, 9, we can use Hecke continued fractions:

For n = 7, the central point is not a

connection point:

Here is an example of a separatrix

passing through one of the central

point whose slope has an eventually

periodic Hecke continued fraction

expansion. (B.-2022).

For n ≥ 11, this argument does not work anymore... As we said, we

conjecture that they are no elements of Q[λn] whose Hecke continued

fraction expansion is eventually periodic !
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Using the obstruction modulo two

Theorem (B.- 2025)

Let n ≥ 7 odd, n ̸= 9. Let P a point on the staircase model of the double

regular n-gon whose coordinates are of the form 1

N (x , y) with x , y ∈ Z[λ]
and N ∈ N⋆. Then,

If N ≥ 1 is odd, then P is not a connection point.

If N is even and [x , y ] /∈ Hn · [1 : 0], then P is not a connection point.

Corollary

For n ≥ 7 odd, n ̸= 9, the central points of the double regular n-gon are

not connection points.

Question

Apart from the middle of the sides, does there exist connection points on

the double regular n-gon for n ≥ 7 odd ?
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If N is even and [x , y ] /∈ Hn · [1 : 0], then P is not a connection point.

Question

Apart from the middle of the sides, does there exist connection points on

the double regular n-gon for n ≥ 7 odd ?

Conjecture

For n = 7, all the remaining points are connection points.

For n ≥ 9, the middle of the sides are the only connection points.
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Theorem (B.- 2025)

Let n ≥ 7 odd, n ̸= 9. Let P a point on the staircase model of the double

regular n-gon whose coordinates are of the form 1

N (x , y) with x , y ∈ Z[λ]
and N ∈ N⋆. Then,

If N ≥ 1 is odd, then P is not a connection point.

If N is even and [x , y ] /∈ Hn · [1 : 0], then P is not a connection point.

Idea of the proof: if P lies in the

central square and

[x : y ] /∈ Hn · [0 : 1], then we can

consider the separatrix from the

origin to P : its slope is [x : y ] which
is thus not in a periodic direction.
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Theorem (B.- 2025)

Let n ≥ 7 odd, n ̸= 9. Let P a point on the staircase model of the double

regular n-gon whose coordinates are of the form 1

N (x , y) with x , y ∈ Z[λ]
and N ∈ N⋆. Then,

If N ≥ 1 is odd, then P is not a connection point.

If N is even and [x , y ] /∈ Hn · [1 : 0], then P is not a connection point.

Idea of the proof: If, for example, P
lies in the top horizontal cylinder, then

φ2

H(P) =
1

N (x + 2(y − N)λ− εN(λ2 − λ), y)

where ε ∈ {0, 1, 2} corresponds to the
zone Z0,Z1,Z2 of P. Hence, the
reduction modulo two of the
coordinates of φ2

H(P) is

(x + ε(λ2 − λ), y)

if N is odd

(and it is left unchanged if N is even).
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Theorem (B.- 2025)

Let n ≥ 7 odd, n ̸= 9. Let P a point on the staircase model of the double

regular n-gon whose coordinates are of the form 1

N (x , y) with x , y ∈ Z[λ]
and N ∈ N⋆. Then,

If N ≥ 1 is odd, then P is not a connection point.

If N is even and [x , y ] /∈ Hn · [1 : 0], then P is not a connection point.

Idea of the proof: Playing with twists

along cylinders, we are able to

construct a point Q in the orbit of P
under the action of the group of

a�ne di�eomorphism of X which

lies in the central square and for

which the separatrix from the origin

to Q is not in a periodic direction.
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Theorem (B. - 2025)

Let n ≥ 7 be a prime number. We consider the double regular n-gon
with the origin placed at the center of the right n-gon. Then the

separatrix starting from the point of coordinates
(
cos 2π

n , sin 2π
n

)
with

direction

(X ,Y ) =

(
1+ 2

(
1+ cos

π

n

)
cos

(
2π

n

)
, 2

(
1− cos

π

n

)
sin

(
2π

n

))
,

passes through the origin (the central point of the right n-gon) and does

not extend to a saddle connection.

→ This uses elementary computations in Q[2 cos π
n ].
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Thanks for your attention !
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