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Translation surfaces

De�nition

A translation surface is a surface obtained from a collection of euclidean
polygon, by identifying pairs of parallel opposite sides of the same length
(by translation).
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Translation surfaces

De�nition

A translation surface is a surface obtained from a collection of euclidean
polygon, by identifying pairs of parallel sides of the same length (by
translation).

These surfaces can also be described as

topological surfaces with an atlas of

charts on the surface minus a �nite set

of points Σ such that all transition

functions are translations, along with a

distinguished direction.

Σ is the set of singularities.
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Translation surfaces

De�nition

A translation surface is a surface obtained from a collection of euclidean
polygon, by identifying pairs of parallel sides of the same length (by
translation).

In the example of the double pentagon

on the right, the vertices of the two

pentagons are all identi�ed to the same

point on the resulting surface. This

point is a conical singularity of angle

6π.

6 / 79



Translation surfaces

De�nition

A translation surface is a surface obtained from a collection of euclidean
polygon, by identifying pairs of parallel sides of the same length (by
translation).

In a translation surface, the singularities

are always conical singularities of angle

2kπ, k ≥ 2.
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Translation surfaces

De�nition

A translation surface is a surface obtained from a collection of euclidean
polygon, by identifying pairs of parallel sides of the same length (by
translation).

The surface inherits the �at structure

from R2 outside the singularities. We

have notions of length, geodesics and

angles.
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Topologically, you can glue the sides of the polygon to make an actual surface.

The genus is the number of holes of the corresponding glued surface.
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Teichmüller space and moduli space

The two polygonal models above give the same resulting surface, whereas
we have below two polygonal models of surfaces with di�erent properties.
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Teichmüller space and moduli space

De�nition

The moduli space ΩMg of translation surfaces of genus g is the set:

ΩMg =

{
Collection of polygons with

identi�cations of parallel sides of
the same length and genus g

}
/cut and paste

The Teichmüller space ΩTg of translation surfaces can be seen as the
space of (X , φ) where X ∈ ΩMg and φ is a marking of a homology basis.

We have ΩMg = ΩTg/MCG (g).
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Moving in the Teichmüller space : local coordinates

The Teichmüller (resp. Moduli) space of translation surfaces has a
natural geometry. Namely if two translation surfaces can be obtained
from one to another by a "small" deformation, these surfaces will be
"close" to each other in the Teichmüller space.

In this example, the vectors v1, v2, v3 and v4 give local coordinates to the
Teichmüller space around this L-shaped translation surface.
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SL2(R)-action

Given a translation surface X described by a collection of polygons and
M ∈ GL+2 (R), we can construct the translation surface M · X .

It is often convenient to consider the action of SL2(R) instead of GL+2 (R)
as it preserves the area.
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Veech group

De�nition

The Veech group of a translation surface X is the stabilizer of X (in the
moduli space) under the action of SL2(R). We denote it by SL(X ).

Proposition

The Veech group of any �at torus is conjugated to SL2(Z).

Consequence: If we quotient by the action of the rotations SO2(R), the
orbit of X in the moduli space can be identi�ed with H2/SL(X ).
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Veech group

De�nition

The Veech group of a translation surface X is the stabilizer of X (in the
moduli space) under the action of SL2(R). We denote it by SL(X ).

Theorem (W.Veech, 1989)

For any translation surface X , SL(X ) is a discrete subgroup of SL2(R).

Consequence: If we quotient by the action of the rotations SO2(R), the
orbit of X under the action of SL2(R) can be identi�ed with H2/SL(X ).
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Example : The golden L

We choose a base surface S in the orbit. If X = M · S with

M =

(
a b
c d

)
∈ SL2(R), we map the surface X to the point di+b

ci+a ∈ H2.
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M =
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a b
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)
∈ SL2(R), we map the surface X to the point di+b
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Example : The golden L

Proposition

The golden L and the double pentagon belong to the same GL+2 (R)-orbit.
The Veech group of the golden L is the triangle group ∆+(2, 5,∞).
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Veech surfaces and cylinder decompositions

De�nition

A Veech surface is a translation surface whose Veech group is a lattice.

Theorem (Veech, 1989)

Each direction on a Veech surface is

either uniquely ergodic or completely

periodic (all geodesics in this

direction are closed).

It implies the existence of a cylinder
decomposition in every periodic
direction.

Figure: A translation surface
decomposed into horizontal
cylinders.
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Bouw-Möller surfaces

Given m, n ≥ 2 with mn ≥ 6, the Bouw-Möller surface Sm,n is a
translation surface build from a collection of m polygons P0, · · · ,Pm−1

such that:

P0 and Pm−1 are regular n-gons of side length sin( πm ),

∀k ∈ {2, · · · ,m − 2}, Pk is an equiangular 2n-gon, and its sides has

length alternating between sin(kπm ) and sin( (k+1)π
m ),

Sides of Pk are alternatively glued to sides of Pk−1 and Pk+1.

P0 P1

P2 P3

P4

Figure: The Bouw-Möller surfaces S2,7 (left) and S5,4 (right).
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Proposition

The surface Sm,n has γ = gcd(m, n) singularities and genus mn−m−n−γ
2 .

Theorem

The Veech group of Sm,n is the triangle group ∆+(m, n,∞).

0

Sm,n
Sn,mSn,m

π
m

π
mπ

n
π
n

cos(π
n
)+cos( π

m
)

sin(π
n
)

A fundamental domain
in H2 for ∆+(m, n,∞).

27 / 79



Proposition

The surface Sm,n has γ = gcd(m, n) singularities and genus mn−m−n−γ
2 .

Theorem

The Veech group of Sm,n is the triangle group ∆+(m, n,∞).

For m = 2 and n = 5, we get back to
the double pentagon.
For m = 5 and n = 2, we get back to
the golden L. (for n = 2, the we have to

consider a degenerate polygon with two

sides)
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Outline

1 Translation surfaces and their Veech groups

2 The algebraic interaction strength KVol

3 A few geometric ideas
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Algebraic intersection

Let X be a closed oriented surface with a Riemannian metric, possibly
with singularities.

Given two oriented closed curves α and β on X, consider the algebraic
intersection Int(α, β).

The algebraic intersection Int(·, ·) is a bilinear symplectic form on homology.
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Algebraic intersection

Question

How many times can two closed curves of a given length intersect ?

De�nition

KVol(X ) := Vol(X ) · sup
α,β closed curves

Int(α, β)

l(α)l(β)

Remark : Multiplying by the volume makes KVol scalar invariant.
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History and motivations

→ In D. Massart's thesis (1996), KVol arises as a comparison constant
between the stable norm ∥ · ∥s and the Hodge norm ∥ · ∥2 in
homology, namely we have for all h ∈ H1(X ,R),

1√
Vol(X )

∥h∥s ≤ ∥h∥2 ≤ KVol(X )
1√

Vol(X )
∥h∥s .

The Hodge norm (coming from the
L2 norm in cohomology) is
euclidean: its unit ball is an ellipse.

The stable norm depends on the
metric, its unit ball can be very
complicated (e.g. polygonal with an
in�nite number of sides)
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History and motivations

→ In D. Massart's thesis (1996), KVol arises as a comparison constant
between the stable norm ∥ · ∥s and the Hodge norm ∥ · ∥2 in
homology, namely we have for all h ∈ H1(X ,R),

1√
Vol(X )

∥h∥s ≤ ∥h∥2 ≤ KVol(X )
1√

Vol(X )
∥h∥s .

→ In 2014, D. Massart and B. Muetzel studied the behaviour of
KVol(X ) as X goes towards the boundary of the moduli space of
hyperbolic surfaces, and gave geometric bounds on KVol, namely for
any Riemannian surface:

Vol(X )

2Dl0
≤ KVol(X ) ≤ 9

Vol(X )

l20
= 9 · SysVol(X ),

where D is the diameter and l0 the homological systolic length of X .
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History and motivations

→ In D. Massart's thesis (1996), KVol arises as a comparison constant
between the stable norm ∥ · ∥s and the Hodge norm ∥ · ∥2 in
homology, namely we have for all h ∈ H1(X ,R),

1√
Vol(X )

∥h∥s ≤ ∥h∥2 ≤ KVol(X )
1√

Vol(X )
∥h∥s .

Theorem (Massart, Muetzel, 2014)

For every Riemannian surface X of genus g ≥ 1, we have:

KVol(X ) ≥ 1

with equality if and only if X is a �at torus.
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Theorem (Massart, Muetzel, 2014)

For every Riemannian surface X of genus g ≥ 1, we have:

KVol(X ) ≥ 1

with equality if and only if X is a �at torus.

Theorem (Balache�, Karam, Parlier, 2021)

There exist c > 0 such that for any hyperbolic surface X of genus g ≥ 2,
we have

KVol(X ) ≥ c
g

(log(g))2

This growth rate is optimal, see [Buser, Sarnak 1994].

Question

What about the growth rate of KVol with the genus on translation surfaces ?
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Conjecture

For any translation surface X of genus g ≥ 1 with a single singularity,

KVol(X ) > g

Theorem (Cheboui, Kessi, Massart, 2021)

There exists a family (L
(2)
n )n∈N of translation surfaces of genus 2 such that

KVol(L
(2)
n ) −→

n→+∞
2

n
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Conjecture

For any translation surface X of genus g ≥ 1 with a single singularity,

KVol(X ) > g

Theorem (B. 2023)

For any g ≥ 2, there exists a family (L
(g)
n )n∈N of translation surfaces of

genus g with a single singularity such that

KVol(L
(g)
n ) −→

n→+∞
g

n
n
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Question

Is it possible to compute explicitely KVol on some examples of translation
surfaces ?

We have seen that KVol is 1 on a �at torus.

In 2021, S. Cheboui, A. Kessi and D.Massart provide a method to
compute KVol on SL2(R)-orbits of a family of squared tiled staircase
surfaces.
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Question

Is it possible to compute explicitely KVol on some examples of translation
surfaces ?

We have seen that KVol is 1 on a �at torus.

In 2021, S. Cheboui, A. Kessi and D.Massart provide a method to
compute KVol on SL2(R)-orbits of a family of squared tiled staircase
surfaces.

In 2022, we extend this method with E.Lanneau and D.Massart to
compute KVol on the SL2(R)-orbit of the double regular n-gons for
odd n.

In 2023, we deal with the case of the regular n-gon for even n.

We then generalize the method with I. Pasquinelli to the case of
Bouw-Möller surfaces with a single singularity.
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Theorem (B.- Pasquinelli)

Let m, n ≥ 2 coprime. For any surface X = M · Sm,n obtained from Sm,n

by the action of a matrix M =

(
a b
c d

)
∈ SL2(R), we have:

KVol(X ) = Km,n ·
1

cosh(dH2(Γm,n ·
di + b

ci + a
, γ∞,± cotπ/n))

where

Km,n > 0 is an explicit constant which only depends on m and n,

γ∞,± cotπ/n is the union of the two hyperbolic geodesics of respective

endpoints ± cotπ/n and ∞.

dH2 is the hyperbolic distance,

Γm,n < SL2(R) is the Veech group of Sm,n.
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0

Sm,n

Sn,mSn,m
θ

X

cot(π
n
)− cot(π

n
) cos(π

n
)+cos(π

m
)

sin(π
n
)

If m and n are coprime,

KVol(X ) = Km,n ·
1

cosh(dH2(Γm,n ·
di + b

ci + a
, γ∞,± cotπ/n))

= Km,n sin θ(X )
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Related results

Theorem (B., 2023)

KVol is bounded on the SL2(R)-orbit of a Veech surface if and only if

there are no (algebraically) intersecting parallel goedesics.

Theorem (B.-Pasquinelli)

There are no intersecting parallel geodesics on Bouw-Möller surfaces.

Hence, KVol is bounded on the SL2(R)-orbit of any Bouw-Möller surface.
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Theorem (B-Pasquinelli)

Let X be a translation surface constructed from a collection of polygons

such that:

(H1) All the polygons are convex with obtuse angles.

(H2) Sides of the same polygon are not paired together.

Then:

KVol(X ) ≤ Vol(X )

l20

with equality if and only if there are two sides of length l0 that represent closed

curves and intersect once at a singularity. Here l0 is the length of the shortest

side of the polygons.

Examples of such surfaces include the Bouw-Möller surfaces Sm,n for
n ≥ 5, but a similar result holds for the regular 2n-gon for n ≥ 8, as
well as the Bouw-Möller surfaces Sm,n with n = 2, 3 or 4.

For X = Sm,n with coprime m, n, we get equality above.
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Theorem (B-Pasquinelli)

Let X be a translation surface constructed from a collection of polygons

such that:

(H1) All the polygons are convex with obtuse angles.

(H2) Sides of the same polygon are not paired together.

Then:

KVol(X ) ≤ Vol(X )

l20

with equality if and only if there are two sides of length l0 that represent closed

curves and intersect once at a singularity. Here l0 is the length of the shortest

side of the polygons.

If X has a single singularity, and all the vertices of the polygons are
identi�ed with the singularity, then l0 is the homological systolic
length of X . Compare with [Massart-Müetzel 2014]:

KVol(X ) ≤ 9
Vol(X )

l20
.
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Theorem (B-Pasquinelli)

Let X be a translation surface constructed from a collection of polygons

such that:

(H1) All the polygons are convex with obtuse angles.

(H2) Sides of the same polygon are not paired together.

Then:

KVol(X ) ≤ Vol(X )

l20

with equality if and only if there are two sides of length l0 that represent closed

curves and intersect once at a singularity. Here l0 is the length of the shortest

side of the polygons.

If X has a single singularity, and all the vertices of the polygons are
identi�ed with the singularity, then l0 is the systolic length of X .

Conjecture

For any translation surface X , KVol(X ) ≤ 2√
3

Vol(X )
l20

.
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1 Translation surfaces and their Veech groups

2 The algebraic interaction strength KVol

3 A few geometric ideas
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KVol(X ) := Vol(X ) · sup
α,β closed curves

Int(α, β)

l(α)l(β)

→ Since the algebraic intersection is homology-invariant, it su�ces to
consider curves which minimizes the length in their homology class in the
de�nition of KVol, that is (simple) closed geodesics.

De�nition

A saddle connection is a geodesic
line starting and ending at
singularities (not necessarily the same).

Saddle connections on the double heptagon.
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Proposition

Every closed curve is homologous to the union of �nitely many saddle

connections, and such unions of saddle connections minimizes the length

in their homology class.

Every closed geodesic comes with a cylinder of freely homotopic geodesics. The
boundary of the cylinder is a union of saddle connnections.

To compute KVol it su�ces to consider (unions of) saddle connections.

→ For the rest of the talk, we will only consider surfaces with one singularity.
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Question

How to compute the algebraic intersection of two saddle connections?

Proposition

Given n ≥ 5 odd, the sides of the double regular n-gon are pairwise

intersecting.

Figure: The double regular pentagon surface. All vertices are identi�ed to the
same point on the surface, which is the intersection point of the 5 systoles.
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Proposition

Given n ≥ 5 odd, the sides of the double regular n-gon are pairwise

intersecting.

Figure: The double regular pentagon surface. All vertices are identi�ed to the
same point on the surface, which is the intersection point of the 5 systoles.

Theorem (B., Lanneau, Massart, 2022)

For all n ≥ 5 odd, the supremum in the de�nition of KVol on the double

regular n-gon is achieved uniquely by pairs of (distinct) sides.
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Theorem (B., Lanneau, Massart, 2022)

For all n ≥ 5 odd, the supremum in the de�nition of KVol on the double

regular n-gon is achieved uniquely by pairs of (distinct) sides.

Idea of the proof:
Given two saddle connections α
and β, we want to show:

Int(α, β)

l(α)l(β)
≤ 1

→ We subdivide α and β into
(non-closed) shorter segments
for which we can control both
the lengths and the
intersections.
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Theorem (B., Lanneau, Massart, 2022)

For all n ≥ 5 odd, the supremum in the de�nition of KVol on the double

regular n-gon is achieved uniquely by pairs of (distinct) sides.

Idea of the proof:
Namely, we cut α (resp. β)
each time it intersects a side of
a polygon. We obtain a
polygonal decomposition

α = α1 ∪ α2 ∪ · · · ∪ αk

β = β1 ∪ β2 ∪ · · · ∪ βl
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Theorem (B., Lanneau, Massart, 2022)

For all n ≥ 5 odd, the supremum in the de�nition of KVol on the double

regular n-gon is achieved uniquely by pairs of (distinct) sides.

We distinguish two types of
segments: adjacent and
non-adjacent segments.

Two non-adjacent segments αi

and βj intersect at most once
while their length is at least 1.

Although adjacent segments
can be very short, we can glue
them by pairs to control their
length.
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Although there are many technical di�culties, the proof extends to a more
general setting:

Theorem (B.,Pasquinelli)

Let X be a translation surface constructed from a collection of polygons such

that:

(H1) All the polygons are convex with obtuse angles.

(H2) Sides of the same polygon are not paired together.

Then:

KVol(X ) ≤ Vol(X )

l2
0

with equality if and only if there are two sides of length l0 that represent closed

curves and intersect once at a singularity. Here l0 is the length of the shortest

side of the polygons.

Theorem (B., Pasquinelli)

For coprime m, n ≥ 2, KVol on Sm,n is achieved by intersecting pairs of systoles.

64 / 79



Question

What happens to KVol when we deform a translation surface ?

Aim

Compute KVol on the SL2(R)-orbit of Bouw-Möller surfaces.
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KVol as a function on the SL2(R)-orbit

We recall that for a given surface X :

KVol(X ) = Vol(X )︸ ︷︷ ︸
=1

· sup
α,β

Int(α, β)

l(α)l(β)

In a SL2(R)-orbit, we rather want to consider closed curves in families.
Namely, if X = M · S , we can transport any curve α on S to a curve
α(X ) on X by the action of M.

This allows to see KVol on the SL2(R)-orbit as a function which is a
supremum of functions:

KVol(X ) = Vol(X )︸ ︷︷ ︸
=1

· sup
α,β

Int(α(X ), β(X ))

l(α(X ))l(β(X ))︸ ︷︷ ︸
fα,β(X )
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KVol(X ) = Vol(X )︸ ︷︷ ︸
=1

· sup
α,β

Int(α(X ), β(X ))

lX (α)lX (β)︸ ︷︷ ︸
fα,β(X )

Lemma

If α and β are not parallel saddle connections, then

fα,β(X ) = K (α, β)× sin angle(α(X ), β(X ))

Where K (α, β) = Int(α,β)
α∧β does not depend on X , and is invariant under

the diagonal action of the Veech group.

How to compute the angle between α(X ) and β(X ) ?
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Example
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Proposition (Cheboui-Kessi-Massart 2021)

Let dα (resp. dβ) be the opposite of the co-slope of α(S) (resp. β(S)).
Then the locus of surfaces X where the directions of α(X ) and β(X )
make an angle θ is the banana neighborhood of angle θ of the geodesic

(dα, dβ).

dα dβ

γdα,dβ

θ θ

In black, the hyperbolic geodesic of
endpoints dα and dβ , which is the locus
of surfaces where α and β are
perpendicular. In red, the banana
neighborhood of angle θ.

Remarks. 1. Here we work in the Teichmüller space.
2. The angles are not oriented
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Geometric interpretation

If parallel saddle connections are non-intersecting, then KVol is a
supremum of fonctions "constant × sinus".

KVol(X ) = Vol(X ) · sup
α,β

[K (α, β) sin θ(X , α, β)].

The pairs (α, β) that will achieve the supremum are most likely to be those for
which K (α, β) is big.
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The double pentagon

α2

β2

The pairs of curves (α, β) having maximal associated constant are (α2, β2) and
their images by the diagonal action of the Veech group.
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The double pentagon

γ2

β2

The pairs of curves (α, β) having second maximal associated constant are
(β2, γk), k ∈ N⋆ and their images by the diagonal action of the Veech group.
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The double pentagon

α2

β2

Theorem (B.,Lanneau,Massart, 2022)

To compute KVol, we only care about the red geodesics.
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The double pentagon

α2

β2

Theorem (B.,Lanneau,Massart, 2022)

∀X ∈ D,∀α, β,K (α, β) sin θ(X , α, β) ≤ 2φ− 1

(φ− 1)2
sin θ(X , α2, β2)︸ ︷︷ ︸

=KVol(X )
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The double pentagon

Theorem (B.,Lanneau,Massart, 2022)

∀X ∈ D,∀α, β,K (α, β) sin θ(X , α, β) ≤ 2φ− 1

(φ− 1)2
sin θ(X , α2, β2)︸ ︷︷ ︸

=KVol(X )
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With I.Pasquinelli, we generalize this result to Bouw-Möller surfaces with a
single singularity.

0

Sm,n

Sn,mSn,m
θ

X

cot(π
n
)− cot(π

n
) cos(π

n
)+cos(π

m
)

sin(π
n
)

If n = 2, we have cot π
n = − cot π

n = 0:

−→ the two red geodesics are merged.
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Thanks for your attention
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